Paradigm | Multi-paradigm: functional, imperative, meta, object-oriented |
---|---|
Designed by | Kamil Skalski, Michał Moskal, Prof. Leszek Pacholski, Paweł Olszta at Wrocław University |
Developer | JetBrains |
First appeared | 2003 |
Stable release | 1.2.507.0[1]
/ 6 August 2016 |
Typing discipline | Inferred, nominal, static, strong |
Platform | CLI |
Filename extensions | .n |
Website | nemerle |
Major implementations | |
Nemerle | |
Influenced by | |
C#, Lisp, ML |
Nemerle is a general-purpose, high-level, statically typed programming language designed for platforms using the Common Language Infrastructure (.NET/Mono). It offers functional, object-oriented and imperative features. It has a simple C#-like syntax and a powerful metaprogramming system. In June 2012, the core developers of Nemerle were hired by the Czech software development company JetBrains. The team is focusing on developing Nitra, a framework to implement extant and new programming languages. This framework will likely be used to create future versions of Nemerle.[2][3][4]
Nemerle is named after the Archmage Nemmerle, a character in the fantasy novel A Wizard of Earthsea by Ursula K. Le Guin.
This section includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (September 2013) |
Nemerle's most notable feature is the ability to mix styles of programming that are object-oriented and functional. Programs may be structured using object-oriented concepts such as classes and namespaces, while methods can (optionally) be written in a functional style. Other notable features include:
The metaprogramming system allows for great compiler extensibility, embedding domain-specific languages, partial evaluation, and aspect-oriented programming, taking a high-level approach to lift as much of the burden as possible from programmers. The language combines all Common Language Infrastructure (CLI) standard features, including parametric polymorphism, lambdas, extension methods etc. Accessing the libraries included in the .NET or Mono platforms is as easy as in C#.
def x = 1; // int
def myList = List(); // generic List[T], type T is deduced from the usage in the next line
myList.Add(x); // compiler deduces type of T as int making myList type of List[int]
def x =
{ // similar to x = 3
def y = 1;
def z = 2;
y + z // this last statement is a block return value
};
def x =
if (DateTime.Now.DayOfWeek == DayOfWeek.Monday) // if, using, try are also expressions
"Monday"
else
"other day";
def x = try int.Parse(someString)
catch { | FormatException() => 0 };
def x = returnBlock :
{
foreach (i in [1, 2, 3])
when (i > 2)
returnBlock(true); // exit block (x = true)
false // x = false
};
def k = (1, "one"); // k : (int * string)
def (a, b) = k; // a = 1, b = "one"
def result = match (number)
{
| 0 => "zero"
| 1 => "one"
| x when x < 0 => "negative"
| _ => "more than one"
}
Type matching with variable binding:
def check (o : object) {
match (o)
{
| i is int => $"An int: $i"
| s is string => $"A string: $(s.ToUpper())"
| _ => "Object of another type"
}
}
Tuple pattern matching:
match (tuple)
{
| ( 42, _ ) => "42 on first position"
| ( _, 42 ) => "42 on second position"
| ( x, y ) => $"( $x, $y )"
}
Regexp matching:
using Nemerle.Text;
regexp match (str) {
| "a+.*" => printf("a\n");
| @"(?<num : int>\d+)-\w+" => printf("%d\n", num + 3);
| "(?<name>(Ala|Kasia))? ma kota" =>
match (name)
{
| Some (n) => printf("%s\n", n)
| None => printf("noname?\n")
}
| _ => printf("default\n");
}
using System.Console; // classes and modules (static classes) can be put in namespaces
def next(x) { x + 1 }; // the type of x argument and other function arguments can be deduced from usage
def mult(x, y) { x * y };
def fibonacci(i)
{
| 0 => 0
| 1 => 1
| other => fibonacci(i - 1) + fibonacci(i - 2)
};
WriteLine(next(9)); // 10 similar to "Console.WriteLine(next(9));"
WriteLine(mult(2, 2)); // 4
WriteLine(fibonacci(10)); // 55
Variants (called data types or sum types in SML and OCaml) are forms of expressing data of several different kinds:
variant RgbColor {
| Red
| Yellow
| Green
| Different {
red : float;
green : float;
blue : float;
}
}
Nemerle's macro system allows for creating, analysing, and modifying program code during compiling. Macros can be used in the form of a method call or as a new language construct. Many constructs within the language are implemented using macros (if, for, foreach, while, using etc.).
"if" macro example:
macro @if (cond, e1, e2)
syntax ("if", "(", cond, ")", e1, Optional (";"), "else", e2)
{
/*
<[ ]> defines an area of quasi-quotation, the Nemerle compiler transforms the code in it
to an AST, such transformations are somewhat similar to an Expression compiling in C#
*/
<[
match ($cond : bool)
{
| true => $e1
| _ => $e2
}
]>
}
// using this macro in code:
def max = if (a > b) a else b;
// during a compile time the upper line will be transformed to this:
def max = match (a > b)
{
| true => a
| _ => b
}
Nemerle can be integrated into the integrated development environment (IDE) Visual Studio 2008. It also has a fully free IDE based on Visual Studio 2008 Shell[5] (like Visual Studio Express Editions) and SharpDevelop (link to plugin source code).
Nemerle can be also integrated into Visual Studio 2010 using an add-in.[6]
The traditional Hello World! can be implemented in a more C#-like fashion:
class Hello
{
static Main () : void
{
System.Console.WriteLine ("Hello, world!");
}
}
or more simply:
System.Console.WriteLine("Hello, world!");
Macros allow generating boilerplate code with added static checks performed by the compiler. They reduce the amount of code that must be written by hand, make code generation safer, and allow programs to generate code with compiler checks, while keeping source code relatively small and readable.
The string formatting macro simplifies variables to string manipulations using $ notation:
def s = $"The number is $i"; //insert the value of the variable i where $i is placed
def s = $"$x + $y = $(x+y)"; // $(...) can be used to make calculations or access members
StructuralEquality, Memoize, json, and with are macros which generate code in compile time. Though some of them (StructuralEquality, Memoize) can look like C# attributes, during compiling, they will be examined by the compiler and transformed to appropriate code using logic predefined by their macros.
[StructuralEquality] // Implement IEquatable[Sample] .Net interface using by element comparison equality.
class Sample
{
[Memoize] // remember first evaluation result
public static SomeLongEvaluations() : int
{
MathLib.CalculateNthPrime(10000000)
}
[DependencyProperty] // WPF dependency property
public DependencyPropertySample { get; set; }
public static Main() : void
{
/* syntax macro "json" generates code:
JObject.Object([("a", JValue.Number(SomeLongEvaluations())), ("b", JValue.Number(SomeLongEvaluations() + 1))])
*/
def jObject = json { a: SomeLongEvaluations(); b: (SomeLongEvaluations() + 1)}
// object initialization macro "<-" is development of C# curly brackets object initialization
def k = Diagnostics.Process() <-
{
StartInfo <- // can init inner objects properties without ctor call
{
FileName = "calc.exe";
UseShellExecute = true;
}
Exited += () => WriteLine("Calc done"); // events and delegates
}
ReadLine();
}
}
Using Nemerle macros for SQL you can write:
ExecuteReaderLoop("SELECT firstname, lastname FROM employee WHERE firstname = $myparm", dbcon,
{
WriteLine ($"Name: $firstname $lastname")
});
instead of
string sql = "SELECT firstname, lastname FROM employee WHERE firstname = :a";
using (NpgsqlCommand dbcmd = new NpgsqlCommand (sql, dbcon, dbtran))
{
dbcmd.Parameters.Add("a", myparm);
using (NpgsqlReader reader = dbcmd.ExecuteReader())
{
while(reader.Read())
{
var firstname = reader.GetString (0);
var lastname = reader.GetString (1);
Console.WriteLine ("Name: {0} {1}", firstname, lastname)
}
}
}
and this is not just hiding some operations in a library, but additional work performed by the compiler to understand the query string, the variables used there, and the columns returned from the database. The ExecuteReaderLoop macro will generate code roughly equivalent to what you would have to type manually. Moreover, it connects to the database at compilation time to check that your SQL query really makes sense.
With Nemerle macros you can also introduce some new syntax into the language:
macro ReverseFor (i, begin, body) syntax ("ford", "(", i, ";", begin, ")", body) { <[ for ($i = $begin; $i >= 0; $i--) $body ]> }
defines a macro introducing the ford (EXPR ; EXPR) EXPR syntax and can be used like
ford (i ; n) print (i);
Nemerle can be either embedded directly into ASP.NET:
<%@ Page Language="Nemerle" %>
<script runat="server">
Page_Load(_ : object, _ : EventArgs) : void {
Message.Text = $"You last accessed this page at: $(DateTime.Now)";
}
EnterBtn_Click(_ : object, _ : EventArgs) : void {
Message.Text = $"Hi $(Name.Text), welcome to ASP.NET!";
}
</script>
<html>
<body>
<form runat="server">
Please enter your name: <asp:TextBox ID="Name" runat="server" />
<asp:Button OnClick="EnterBtn_Click" Text="Enter" runat="server" />
<p><asp:Label ID="Message" runat="server" /></p>
</form>
</body>
</html>
...Or stored in a separate file and entered with a single line:
<%@ Page Language="Nemerle" Src="test.n" Inherits="Test" %>
Nemerle can take advantage of native platform libraries. The syntax is very similar to C#'s and other .NET languages. Here is the simplest example:
using System;
using System.Runtime.InteropServices;
class PlatformInvokeTest
{
[DllImport("msvcrt.dll")]
public extern static puts(c : string) : int;
[DllImport("msvcrt.dll")]
internal extern static _flushall() : int;
public static Main() : void
{
_ = puts("Test");
_ = _flushall();
}
}
|journal=
(help)
By: Wikipedia.org
Edited: 2021-06-18 18:14:49
Source: Wikipedia.org