The memento pattern is a software design pattern that provides the ability to restore an object to its previous state (undo via rollback).
The memento pattern is implemented with three objects: the originator, a caretaker and a memento. The originator is some object that has an internal state. The caretaker is going to do something to the originator, but wants to be able to undo the change. The caretaker first asks the originator for a memento object. Then it does whatever operation (or sequence of operations) it was going to do. To roll back to the state before the operations, it returns the memento object to the originator. The memento object itself is an opaque object (one which the caretaker cannot, or should not, change). When using this pattern, care should be taken if the originator may change other objects or resources—the memento pattern operates on a single object.
Classic examples of the memento pattern include the seed of a pseudorandom number generator (it will always produce the same sequence thereafter when initialized with the seed state)[citation needed][clarification needed] and the state in a finite state machine.
The Memento [1] design pattern is one of the twenty-three well-known GoF design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse. The Memento Pattern was created by Noah Thompson, David Espiritu, and Dr. Drew Clinkenbeard for early HP products.
The problem is that a well designed object is encapsulated so that its representation (data structure) is hidden inside the object and can't be accessed from outside the object.
Make an object (originator) itself responsible for
Only the originator that created a memento is allowed to access it.
A client (caretaker) can request a memento from the originator (to save the internal state of the originator) and pass a memento back to the originator (to restore to a previous state).
This enables to save and restore the internal state of an originator without violating its encapsulation.
See also the UML class and sequence diagram below.
In the above UML class diagram,
the Caretaker
class refers to the Originator
class
for saving (createMemento()
) and restoring (restore(memento)
) originator's internal state.
The Originator
class implements
(1) createMemento()
by creating and returning a Memento
object that stores originator's current internal state
and
(2) restore(memento)
by restoring state from the passed in Memento
object.
The UML sequence diagram
shows the run-time interactions:
(1) Saving originator's internal state: The Caretaker
object calls createMemento()
on the Originator
object,
which creates a Memento
object, saves
its current internal state (setState()
), and returns the Memento
to the Caretaker
.
(2) Restoring originator's internal state: The Caretaker
calls restore(memento)
on the Originator
object and specifies the Memento
object that stores the state that should be restored. The Originator
gets the state (getState()
) from the Memento
to set its own state.
The following Java program illustrates the "undo" usage of the memento pattern.
import java.util.List;
import java.util.ArrayList;
class Originator {
private String state;
// The class could also contain additional data that is not part of the
// state saved in the memento..
public void set(String state) {
this.state = state;
System.out.println("Originator: Setting state to " + state);
}
public Memento saveToMemento() {
System.out.println("Originator: Saving to Memento.");
return new Memento(this.state);
}
public void restoreFromMemento(Memento memento) {
this.state = memento.getSavedState();
System.out.println("Originator: State after restoring from Memento: " + state);
}
public static class Memento {
private final String state;
public Memento(String stateToSave) {
state = stateToSave;
}
// accessible by outer class only
private String getSavedState() {
return state;
}
}
}
class Caretaker {
public static void main(String[] args) {
List<Originator.Memento> savedStates = new ArrayList<Originator.Memento>();
Originator originator = new Originator();
originator.set("State1");
originator.set("State2");
savedStates.add(originator.saveToMemento());
originator.set("State3");
// We can request multiple mementos, and choose which one to roll back to.
savedStates.add(originator.saveToMemento());
originator.set("State4");
originator.restoreFromMemento(savedStates.get(1));
}
}
The output is:
Originator: Setting state to State1 Originator: Setting state to State2 Originator: Saving to Memento. Originator: Setting state to State3 Originator: Saving to Memento. Originator: Setting state to State4 Originator: State after restoring from Memento: State3
This example uses a String as the state, which is an immutable object in Java. In real-life scenarios the state will almost always be a mutable object, in which case a copy of the state must be made.
It must be said that the implementation shown has a drawback: it declares an internal class. It would be better if this memento strategy could apply to more than one originator.
There are mainly three other ways to achieve Memento:
The memento pattern allows one to capture the internal state of an object without violating encapsulation such that later one can undo/revert the changes if required. Here one can see that the memento object is actually used to revert the changes made in the object.
class Memento
{
private readonly string savedState;
private Memento(string stateToSave)
{
savedState = stateToSave;
}
public class Originator
{
private string state;
// The class could also contain additional data that is not part of the
// state saved in the memento.
public void Set(string state)
{
Console.WriteLine("Originator: Setting state to " + state);
this.state = state;
}
public Memento SaveToMemento()
{
Console.WriteLine("Originator: Saving to Memento.");
return new Memento(state);
}
public void RestoreFromMemento(Memento memento)
{
state = memento.savedState;
Console.WriteLine("Originator: State after restoring from Memento: " + state);
}
}
}
class Caretaker
{
static void Main(string[] args)
{
List<Memento> savedStates = new List<Memento>();
Memento.Originator originator = new Memento.Originator();
originator.Set("State1");
originator.Set("State2");
savedStates.Add(originator.SaveToMemento());
originator.Set("State3");
// We can request multiple mementos, and choose which one to roll back to.
savedStates.Add(originator.SaveToMemento());
originator.Set("State4");
originator.RestoreFromMemento(savedStates[1]);
}
}
"""
Memento pattern example.
"""
class Memento:
def __init__(self, state) -> None:
self._state = state
def get_saved_state(self):
return self._state
class Originator:
_state = ""
def set(self, state) -> None:
print("Originator: Setting state to", state)
self._state = state
def save_to_memento(self) -> Memento:
print("Originator: Saving to Memento.")
return Memento(self._state)
def restore_from_memento(self, memento) -> None:
self._state = memento.get_saved_state()
print("Originator: State after restoring from Memento:", self._state)
saved_states = []
originator = Originator()
originator.set("State1")
originator.set("State2")
saved_states.append(originator.save_to_memento())
originator.set("State3")
saved_states.append(originator.save_to_memento())
originator.set("State4")
originator.restore_from_memento(saved_states[1])
By: Wikipedia.org
Edited: 2021-06-18 19:29:17
Source: Wikipedia.org