Numeral systems 

Hindu–Arabic numeral system 
East Asian 

American 

Alphabetic 
Former 

Positional systems by base 
Nonstandard positional numeral systems 

List of numeral systems 
The Hindu–Arabic numeral system or IndoArabic numeral system ^{[1]} (also called the Arabic numeral system or Hindu numeral system)^{[2]}^{[note 1]} is a positional decimal numeral system, and is the most common system for the symbolic representation of numbers in the world.
It was invented between the 1st and 4th centuries by Indian mathematicians. The system was adopted in Arabic mathematics by the 9th century. Influential were the books of AlKhwārizmī^{[3]} (On the Calculation with Hindu Numerals, c. 825) and AlKindi (On the Use of the Hindu Numerals, c. 830). The system later spread to medieval Europe by the High Middle Ages.
The system is based upon ten (originally nine) glyphs. The symbols (glyphs) used to represent the system are in principle independent of the system itself. The glyphs in actual use are descended from Brahmi numerals and have split into various typographical variants since the Middle Ages.
These symbol sets can be divided into three main families: Western Arabic numerals used in the Greater Maghreb and in Europe, Eastern Arabic numerals used in the Middle East, and the Indian numerals in various scripts used in the Indian subcontinent.
The HinduArabic or IndoArabic numerals were invented by mathematicians in India.^{[4]} Persian and Arabic mathematicians called them "Hindu numerals". Later they came to be called "Arabic numerals" in Europe because they were introduced to the West by Arab merchants.^{[5]}
The Hindu–Arabic system is designed for positional notation in a decimal system. In a more developed form, positional notation also uses a decimal marker (at first a mark over the ones digit but now more usually a decimal point or a decimal comma which separates the ones place from the tenths place), and also a symbol for "these digits recur ad infinitum". In modern usage, this latter symbol is usually a vinculum (a horizontal line placed over the repeating digits). In this more developed form, the numeral system can symbolize any rational number using only 13 symbols (the ten digits, decimal marker, vinculum, and a prepended minus sign to indicate a negative number).
Although generally found in text written with the Arabic abjad ("alphabet"), numbers written with these numerals also place the mostsignificant digit to the left, so they read from left to right. The requisite changes in reading direction are found in text that mixes lefttoright writing systems with righttoleft systems.
Various symbol sets are used to represent numbers in the Hindu–Arabic numeral system, most of which developed from the Brahmi numerals.
The symbols used to represent the system have split into various typographical variants since the Middle Ages, arranged in three main groups:
Symbol  Used with alphabets  Numerals  

0  1  2  3  4  5  6  7  8  9  Arabic, Latin, Cyrillic, and Greek  Arabic numerals 
𑁦  𑁧  𑁨  𑁩  𑁪  𑁫  𑁬  𑁭  𑁮  𑁯  Brahmi  Brahmi numerals 
०  १  २  ३  ४  ५  ६  ७  ८  ९  Devanagari  Devanagari numerals 
૦  ૧  ૨  ૩  ૪  ૫  ૬  ૭  ૮  ૯  Gujarati  Gujarati numerals 
੦  ੧  ੨  ੩  ੪  ੫  ੬  ੭  ੮  ੯  Gurmukhi  Gurmukhi numerals 
০  ১  ২  ৩  ৪  ৫  ৬  ৭  ৮  ৯  Bengali / Assamese  Bengali numerals 
೦  ೧  ೨  ೩  ೪  ೫  ೬  ೭  ೮  ೯  Kannada  Kannada script § Numerals 
୦  ୧  ୨  ୩  ୪  ୫  ୬  ୭  ୮  ୯  Odia  Odia numerals 
൦  ൧  ൨  ൩  ൪  ൫  ൬  ൭  ൮  ൯  Malayalam  Malayalam script § Other symbols 
௦  ௧  ௨  ௩  ௪  ௫  ௬  ௭  ௮  ௯  Tamil  Tamil numerals 
౦  ౧  ౨  ౩  ౪  ౫  ౬  ౭  ౮  ౯  Telugu  Telugu script § Numerals 
၀  ၁  ၂  ၃  ၄  ၅  ၆  ၇  ၈  ၉  Burmese  Burmese numerals 
༠  ༡  ༢  ༣  ༤  ༥  ༦  ༧  ༨  ༩  Tibetan  Tibetan numerals 
᠐  ᠑  ᠒  ᠓  ᠔  ᠕  ᠖  ᠗  ᠘  ᠙  Mongolian  Mongolian numerals 
෦  ෧  ෨  ෩  ෪  ෫  ෬  ෭  ෮  ෯  Sinhala  Sinhala numerals 
០  ១  ២  ៣  ៤  ៥  ៦  ៧  ៨  ៩  Khmer  Khmer numerals 
๐  ๑  ๒  ๓  ๔  ๕  ๖  ๗  ๘  ๙  Thai  Thai numerals 
໐  ໑  ໒  ໓  ໔  ໕  ໖  ໗  ໘  ໙  Lao  Lao script § Numerals 
꧐  ꧑  ꧒  ꧓  ꧔  ꧕  ꧖  ꧗  ꧘  ꧙  Javanese  Javanese numerals 
٠  ١  ٢  ٣  ٤  ٥  ٦  ٧  ٨  ٩  Arabic  Eastern Arabic numerals 
۰  ۱  ۲  ۳  ۴  ۵  ۶  ۷  ۸  ۹  Persian / Dari / Pashto  
۰  ۱  ۲  ۳  ۴  ۵  ۶  ۷  ۸  ۹  Urdu / Shahmukhi  
〇/零  一  二  三  四  五  六  七  八  九  East Asia  Chinese, Vietnamese, Japanese, and Korean numerals 
ο/ō  Αʹ  Βʹ  Γʹ  Δʹ  Εʹ  Ϛʹ  Ζʹ  Ηʹ  Θʹ  Modern Greek  Greek numerals 
The Brahmi numerals at the basis of the system predate the Common Era. They replaced the earlier Kharosthi numerals used since the 4th century BCE. Brahmi and Kharosthi numerals were used alongside one another in the Maurya Empire period, both appearing on the 3rd century BCE edicts of Ashoka.^{[6]}
Buddhist inscriptions from around 300 BCE use the symbols that became 1, 4, and 6. One century later, their use of the symbols that became 2, 4, 6, 7, and 9 was recorded. These Brahmi numerals are the ancestors of the Hindu–Arabic glyphs 1 to 9, but they were not used as a positional system with a zero, and there were rather separate numerals for each of the tens (10, 20, 30, etc.).
The actual numeral system, including positional notation and use of zero, is in principle independent of the glyphs used, and significantly younger than the Brahmi numerals.
The placevalue system is used in the Bakhshali Manuscript. Although date of the composition of the manuscript is uncertain, the language used in the manuscript indicates that it could not have been composed any later than 400.^{[7]} The development of the positional decimal system takes its origins in Hindu mathematics during the Gupta period. Around 500, the astronomer Aryabhata uses the word kha ("emptiness") to mark "zero" in tabular arrangements of digits. The 7th century Brahmasphuta Siddhanta contains a comparatively advanced understanding of the mathematical role of zero. The Sanskrit translation of the lost 5th century Prakrit Jaina cosmological text Lokavibhaga may preserve an early instance of positional use of zero.^{[8]}
These Indian developments were taken up in Islamic mathematics in the 8th century, as recorded in alQifti's Chronology of the scholars (early 13th century).^{[9]}
The numeral system came to be known to both the Persian mathematician Khwarizmi, who wrote a book, On the Calculation with Hindu Numerals in about 825, and the Arab mathematician AlKindi, who wrote a book, On the Use of the Hindu Numerals (كتاب في استعمال العداد الهندي [kitāb fī isti'māl al'adād alhindī]) around 830. Persian scientist Kushyar Gilani who wrote Kitab fi usul hisab alhind (Principles of Hindu Reckoning) is one of the oldest surviving manuscripts using the Hindu numerals.^{[10]} These books are principally responsible for the diffusion of the Hindu system of numeration throughout the Islamic world and ultimately also to Europe.
The first dated and undisputed inscription showing the use of a symbol for zero appears on a stone inscription found at the Chaturbhuja Temple at Gwalior in India, dated 876.^{[11]}
In 10th century Islamic mathematics, the system was extended to include fractions, as recorded in a treatise by Syrian mathematician Abu'lHasan alUqlidisi in 952–953.^{[12]}
In Christian Europe, the first mention and representation of Hindu–Arabic numerals (from one to nine, without zero), is in the Codex Vigilanus, an illuminated compilation of various historical documents from the Visigothic period in Spain, written in the year 976 by three monks of the Riojan monastery of San Martín de Albelda. Between 967 and 969, Gerbert of Aurillac discovered and studied Arab science in the Catalan abbeys. Later he obtained from these places the book De multiplicatione et divisione (On multiplication and division). After becoming Pope Sylvester II in the year 999, he introduced a new model of abacus, the socalled Abacus of Gerbert, by adopting tokens representing Hindu–Arab numerals, from one to nine.
Leonardo Fibonacci brought this system to Europe. His book Liber Abaci introduced Arabic numerals, the use of zero, and the decimal place system to the Latin world. The numeral system came to be called "Arabic" by the Europeans. It was used in European mathematics from the 12th century, and entered common use from the 15th century to replace Roman numerals.^{[13]}^{[14]}
The familiar shape of the Western Arabic glyphs as now used with the Latin alphabet (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) are the product of the late 15th to early 16th century, when they enter early typesetting. Muslim scientists used the Babylonian numeral system, and merchants used the Abjad numerals, a system similar to the Greek numeral system and the Hebrew numeral system. Similarly, Fibonacci's introduction of the system to Europe was restricted to learned circles. The credit for first establishing widespread understanding and usage of the decimal positional notation among the general population goes to Adam Ries, an author of the German Renaissance, whose 1522 Rechenung auff der linihen und federn (Calculating on the Lines and with a Quill) was targeted at the apprentices of businessmen and craftsmen.
A calculation tableRoman numerals
, used for arithmetic usingIn 690 CE, Empress Wu promulgated Zetian characters, one of which was "〇". The word is now used as a synonym for the number zero.
In China, Gautama Siddha introduced Hindu numerals with zero in 718, but Chinese mathematicians did not find them useful, as they had already had the decimal positional counting rods.^{[15]}^{[16]}
In Chinese numerals, a circle (〇) is used to write zero in Suzhou numerals. Many historians think it was imported from Indian numerals by Gautama Siddha in 718, but some Chinese scholars think it was created from the Chinese text space filler "□".^{[15]}
Chinese and Japanese finally adopted the Hindu–Arabic numerals in the 19th century, abandoning counting rods.
The "Western Arabic" numerals as they were in common use in Europe since the Baroque period have secondarily found worldwide use together with the Latin alphabet, and even significantly beyond the contemporary spread of the Latin alphabet, intruding into the writing systems in regions where other variants of the Hindu–Arabic numerals had been in use, but also in conjunction with Chinese and Japanese writing (see Chinese numerals, Japanese numerals).
When the Arabian empire was expanding and contact was made with India, the Hindu numeral system and the early algorithms were adopted by the Arabs
By: Wikipedia.org
Edited: 20210618 17:50:36
Source: Wikipedia.org